occ

INITIAL EVALUATION GUIDE FOR DISPERSANT USE

29 October 2015

(rev. 29 November 2016)

Guidance for Evaluating:

- 1. Dispersant Potential Effectiveness
- 2. Dispersant Net Environmental Benefit Analysis (NEBA)
 - 3. Dispersant Feasibility

Dispersant Potential Effectiveness

ACTION: Collect information on the oil and environmental conditions to evaluate whether dispersants are likely to be effective in the specific scenario.

NOTE: These parameters change with time, therefore regular updates are required to determine the **window of opportunity** for dispersant use. For example, weathering increases oil density, viscosity and water content, and is therefore likely to result in dispersant application becoming ineffective with time.

Optimal Oil Properties

Note that these figures are guidelines for optimal values based on past experience. A small scale test will help to confirm whether the specific oil is dispersible.

Oil Properties	Optimal values
Density/API gravity	>17 (see Figure 1, below)
Pour point	>10°F (approx. 5°C) above ambient temperature (see Figure 1, below)
Viscosity	<10,000cSt (see Figure 2, below)
Emulsification	<50% water content
Thickness	> 0.01mm / 10µm - aim for the thickest part of the slick, dispersants are not
	typically applied to sheen

Probability difficult or impossible to disperse	Medium weight material. Fairly persistent. Probably difficult to disperse if water temperature is below pour point of material.	Lightweight material. Relatively non-persistent. Probably difficult to disperse if water temperature is below pour point of material.	e. Very light weight lissipate rapidly.
	Medium weight material. Fairly persistent. Easily dispersed if treated properly.	Lightweight material. Relatively non-persistent. Easily dispersed.	No need to disperse. Very li material. Oil will dissipate
API Gravity	17 .953	34.5 .852	45 .802

Figure 1 Optimum conditions for dispersant use (from RRT 6 Dispersant Pre-Approval Guidelines and Checklist, 2001)

Oil type/viscosity	Dispersant effectiveness
Light distillate fuels (petrol, kerosene, diesel oil)	Dispersant use not advised These oils will evaporate and naturally disperse quite rapidly in most conditions.
Oils with viscosity up to 5,000 cSt	Dispersant use is likely to be effective
Oils with viscosity between 5,000 and 10,000 cSt	Dispersant use might be effective
Oils with viscosity above 10,000 cSt	Dispersant use is likely to be ineffective (though success is reported on oils with viscosity greater than 20,000 cP)

Figure 2 Oil type/viscosity for dispersant use (from IPIECA/OGP Dispersants: Surface Application, 2015)

Optimal Environmental Conditions

Note that these figures are guidelines based on past experience. A small scale test will help to confirm whether the specific oil is dispersible.

Condition	Optimal values
Wind	5 to 25kt
Sea state	The higher the energy the better, up to 5 m waves
Visibility	>3 miles
Ceiling	>1,000ft (300m)
Light	Daylight
Water depth	Typically, a water depth of > 10m is recommended/required to aid mixing

Dispersant Net Environmental Benefit Analysis (NEBA)

ACTION: Collect and collate information to answer the following initial questions for a NEBA.

Question	Information source
Where is the oil?	Aerial observations, maps
Where is the oil going?	Trajectory modeling
What will the oil do without dispersants?	Fate and behaviour modeling
What will the oil do with dispersants?	Fate and behaviour / trajectory modeling with dispersant
Is dispersant application likely to be effective? For how long?	See Potential Effectiveness above, consider the window of opportunity for dispersant application
How are dispersants likely to affect the fate and behaviour of the oil?	 Compare trajectory, fate and behaviour modeling. Consider location, size/area/volume, depth Water surface, water column, benthos, shoreline Evaporated, dispersed (natural/chemical), emulsified, stranded, etc.
What are the available options (including "do nothing")?	 Consider: Permitted/authorized tactics (relevant agency/ies) Availability of equipment (logistics) Feasibility of tactics (operations) Ability to operate safely (Safety) Potential effectiveness (Operations)
What is our current knowledge on	General information (e.g. ITOPF TIP, IPIECA guide, etc.)
dispersants and other options? What are the Resources At Risk?	Relevant studies and past incidents (e.g. TROPICS, BIOS, etc.) GIS, ESI, other environmental economic, and human use sensitivity data, ICS 232 Form Consider shoreline, sea surface, water column, benthos
What are the potential impacts?	Consider toxicity and physical (smothering) effects, using: Oil trajectory, fate, and behaviour data Potential (modeled) concentrations Toxicity data Resources at risk Consider operational restrictions e.g. avoidance of specific areas, depths
How does dispersant application compare with other available options?	Compare:
How can we effectively monitor dispersant effectiveness and impacts?	Consider monitoring options:aerial observationsUV FluorimetrySampling and analysis

Dispersant Feasibility

ACTION: Collect operational, logistical and safety information to evaluate whether dispersant application is likely to be feasible, and answer the following questions:

Question	Information required
Is dispersant application likely to be safe	Consider the Health and Safety of response personnel and the public (Safety Officer)
Is dispersant application approved in the country/region of interest	Check with the relevant authority/documents, consider depth, location, and other restrictions
Have specific dispersants been approved for use in the country/region of interest?	Check with the relevant authority/documents
Are approved dispersants available for use?	Check contractors/equipment lists
What is the most appropriate platform for dispersant application	Consider the conditions (spill source, location, volume) for the following options: • Aerial • Vessel • Subsea
Is the necessary application equipment (pumps, sprays, vessels, aircraft, etc.) available for use?	Check contractors/equipment lists
Do the logistics allow for dispersant application	Consider travel distances and transportation options for mobilization and application
Can the dispersant be applied within the Window of Opportunity?	Consider mobilization time, time to application