occ ## INITIAL EVALUATION GUIDE FOR DISPERSANT USE 29 October 2015 (rev. 29 November 2016) ### **Guidance for Evaluating:** - 1. Dispersant Potential Effectiveness - 2. Dispersant Net Environmental Benefit Analysis (NEBA) - 3. Dispersant Feasibility ### **Dispersant Potential Effectiveness** ACTION: Collect information on the oil and environmental conditions to evaluate whether dispersants are likely to be effective in the specific scenario. NOTE: These parameters change with time, therefore regular updates are required to determine the **window of opportunity** for dispersant use. For example, weathering increases oil density, viscosity and water content, and is therefore likely to result in dispersant application becoming ineffective with time. #### Optimal Oil Properties Note that these figures are guidelines for optimal values based on past experience. A small scale test will help to confirm whether the specific oil is dispersible. | Oil Properties | Optimal values | |---------------------|---| | Density/API gravity | >17 (see Figure 1, below) | | Pour point | >10°F (approx. 5°C) above ambient temperature (see Figure 1, below) | | Viscosity | <10,000cSt (see Figure 2, below) | | Emulsification | <50% water content | | Thickness | > 0.01mm / 10µm - aim for the thickest part of the slick, dispersants are not | | | typically applied to sheen | | Probability difficult or impossible to disperse | Medium weight
material. Fairly
persistent. Probably
difficult to disperse if
water temperature
is below pour point
of material. | Lightweight
material. Relatively
non-persistent.
Probably difficult to
disperse if water
temperature is
below pour point of
material. | e. Very light weight
lissipate rapidly. | |---|---|--|--| | | Medium weight
material. Fairly
persistent. Easily
dispersed if treated
properly. | Lightweight
material. Relatively
non-persistent.
Easily dispersed. | No need to disperse. Very li
material. Oil will dissipate | | API
Gravity | 17
.953 | 34.5
.852 | 45
.802 | Figure 1 Optimum conditions for dispersant use (from RRT 6 Dispersant Pre-Approval Guidelines and Checklist, 2001) | Oil type/viscosity | Dispersant effectiveness | |---|---| | Light distillate fuels (petrol, kerosene, diesel oil) | Dispersant use not advised These oils will evaporate and naturally disperse quite rapidly in most conditions. | | Oils with viscosity up to 5,000 cSt | Dispersant use is likely to be effective | | Oils with viscosity between 5,000 and 10,000 cSt | Dispersant use might be effective | | Oils with viscosity above 10,000 cSt | Dispersant use is likely to be ineffective (though success is reported on oils with viscosity greater than 20,000 cP) | Figure 2 Oil type/viscosity for dispersant use (from IPIECA/OGP Dispersants: Surface Application, 2015) ### Optimal Environmental Conditions Note that these figures are guidelines based on past experience. A small scale test will help to confirm whether the specific oil is dispersible. | Condition | Optimal values | |-------------|---| | Wind | 5 to 25kt | | Sea state | The higher the energy the better, up to 5 m waves | | Visibility | >3 miles | | Ceiling | >1,000ft (300m) | | Light | Daylight | | Water depth | Typically, a water depth of > 10m is recommended/required to aid mixing | # Dispersant Net Environmental Benefit Analysis (NEBA) ACTION: Collect and collate information to answer the following initial questions for a NEBA. | Question | Information source | |---|---| | Where is the oil? | Aerial observations, maps | | Where is the oil going? | Trajectory modeling | | What will the oil do without dispersants? | Fate and behaviour modeling | | What will the oil do with dispersants? | Fate and behaviour / trajectory modeling with dispersant | | Is dispersant application likely to be effective? For how long? | See Potential Effectiveness above, consider the window of opportunity for dispersant application | | How are dispersants likely to affect the fate and behaviour of the oil? | Compare trajectory, fate and behaviour modeling. Consider location, size/area/volume, depth Water surface, water column, benthos, shoreline Evaporated, dispersed (natural/chemical), emulsified, stranded, etc. | | What are the available options (including "do nothing")? | Consider: Permitted/authorized tactics (relevant agency/ies) Availability of equipment (logistics) Feasibility of tactics (operations) Ability to operate safely (Safety) Potential effectiveness (Operations) | | What is our current knowledge on | General information (e.g. ITOPF TIP, IPIECA guide, etc.) | | dispersants and other options? What are the Resources At Risk? | Relevant studies and past incidents (e.g. TROPICS, BIOS, etc.) GIS, ESI, other environmental economic, and human use sensitivity data, ICS 232 Form Consider shoreline, sea surface, water column, benthos | | What are the potential impacts? | Consider toxicity and physical (smothering) effects, using: Oil trajectory, fate, and behaviour data Potential (modeled) concentrations Toxicity data Resources at risk Consider operational restrictions e.g. avoidance of specific areas, depths | | How does dispersant application compare with other available options? | Compare: | | How can we effectively monitor dispersant effectiveness and impacts? | Consider monitoring options:aerial observationsUV FluorimetrySampling and analysis | # Dispersant Feasibility ACTION: Collect operational, logistical and safety information to evaluate whether dispersant application is likely to be feasible, and answer the following questions: | Question | Information required | |--|---| | Is dispersant application likely to be safe | Consider the Health and Safety of response personnel and the public (Safety Officer) | | Is dispersant application approved in the country/region of interest | Check with the relevant authority/documents, consider depth, location, and other restrictions | | Have specific dispersants been approved for use in the country/region of interest? | Check with the relevant authority/documents | | Are approved dispersants available for use? | Check contractors/equipment lists | | What is the most appropriate platform for dispersant application | Consider the conditions (spill source, location, volume) for the following options: • Aerial • Vessel • Subsea | | Is the necessary application equipment (pumps, sprays, vessels, aircraft, etc.) available for use? | Check contractors/equipment lists | | Do the logistics allow for dispersant application | Consider travel distances and transportation options for mobilization and application | | Can the dispersant be applied within the Window of Opportunity? | Consider mobilization time, time to application |